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Abstraet--An algorithm based un variable Melric methud has been applied tu the determination of 
molecular thermodynamic mudel parameters fium experimental data when any model need several con- 
straints, lmplementaIion u[ the method is illustrated in the redu(tion uf luulti-property equatiun of state data 
fur the systems uf argun, nitrogen aud methane. 

INTRODUCTION 

Recently reliable and robust nonliner programing 
techniques have become available for optimizing func- 
tions subject to equality and/or inequality constraints. 
Such numerical techniques can be useful tools in the 
field of molecular theromodynamics as well as other 
chemical engineering fields, 

One such technique is the variable metric method 
of Powell [1,2]. This algorithm has been applied to the pro- 
blem of estimating parameters in a nonlinear critical 
point constrained multiproperty equation of state. The 
important feature of this technique is thai an optimum 
set of parameters can be obtained which at the same 
time fit exactly constraints imposed by thermodynamic 
considerations. With an equation of state the constraints 
are those implied by the gas-liquid critical points. 
Although the method is used here with the new equa- 
riot: of state developed by Yoo [3], it may be used with 
an,,' type of complex molecular thermodynamic models. 

CONSTRAINED OPTIMIZATION BY 
VARIABLE METRIC METHOD 

The estimation of parameters in any type of problem 
reduces one which an objective function F(x)= F(Xl, 
x2 . . . . .  xn) is to be minimized by obtaining optimum 
values of the n adjustable parameters x. In addition, the 
parameters in the model may be subject to both equality 
am:i inequality constraints given by 

C~(x)= O, i 1, 2, . . ,  rn" (1) 

Ci(x) ~ 0 ,  i - r e ' +  1, "", m 

where m" is the number of equality constraints and Jn is 
the total number of both equality and inequality con- 

straints on the values of the variables. Here we are con- 
cerned with the case F{x_) and Ci(x) are differentiab[e 
and suppose that all first and second derivatives can be 
calculate for anyx. 

Among various methods proposed on constrained 
optimization such as penalty function method [4], 
augmented Lagrangian method and superlinear con- 
straints approximations [1, 2, 5, 6], the Powell's 
algorithm based on variable metric with superline,ar ap- 
proximation is especially advantageous when an objec- 
tive function need a large number of both equality 
and/or inequality side conditions with high nonlinearity 
of objective and constraint functions. 

A detailed discussion of Powell's algorithm is inap- 
propriate here. Instead, only the fundamental concepts 
are introduced to provide a qualitative understanding. 
Interested readers are referred to the works of Powell [1, 
2, 6] for complete description and implementation of the 
method. The variable metric methods have been used 
successfully for many years for unconstrained optimiza- 
tion calculations. A good survery of their properties is 
given by Dennis and More [7]. The algorithm of Powell 
for solving the general constrained optimization pro- 
blem combines the advantages of variable metric 
methods for unconstrained optimization calculation 
with the fast convergence of Newton's method for solv- 
ing nonlinear equations. It is based on the works of 
Biggs [8], Hart [5, 9], and Powell [6]. 

With the Powell algorithm the derivatives of the ob- 
jective function yields the gradient of F(_x) and is defined 
as G(x). Similarly, the derivatives of all the constraints 
give a matrix, K, whose columns are the normats of the 
constraints. Both the gradient vector and normal matrix 
are required in the algorithm. 

The first iteration starts with an initial estimate ofx at 
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which the gradient and normals are evaluated. A 
positiw? definite matrix, B*, defined as the current 
"metric," is initialized to the identity matrix. In an un- 
constrained optimization B* is regarded as an approx- 
imation to the second partial derivatives. As discussed 
by Powell, in a constrained optimization the matrix B* 
may not be strictly identified in this way. However, the 
algorithm provides a method for updating the matrix B* 
such that it includes some second derivatives informa- 
tion, and thus, provides superlinear convergence. 

Based on the current values of the object function 
and its gradient and on the current matrix, a search 
direction vector, _d, is calculated which satisfy the con- 
straints and minimize a guadratic function, with the 
search direction vector the parameters are updated as in 
the unconstrained optimization problem. Then matrix 
B* is re.vised and other iteration is begun. Convergence 
is assumed when no further improvement is achieved in 
minimizing the objective function. 

PERTURBED HARD-CORE EQUATION OF 
STATE 

While it is not yet possible to construct a rigorous 
statistical-mechanical theory of fluids, much progress 
has been made developing approximate models based 
on the radial distribution function and the interparticle 
potential function for gases and liquids. 

Among numerous theoretical models, one of the 
most simple and attractive are the hard-core equation of 
state. The principal advantage to these equations are 
that the fundamental integral equation based on radial 
distribution function can be solved analytically when us- 
ing hardcore potential. 

Thi:s equation has been discussed previously by sev- 
eral authors [10-12]. However, becaus of its simplistic 
nature, only limited success in representing properties 
of real fluids has been achieved, and difficulties are 
often experienced in qualitatively representing proper- 
ties near the critical point and the molecular rigidity at 
extreme pressure region. 

In an attempt to obtain an equation of state with im- 
provec accuracy for engineering-oriented calculations, a 
new hard-core equation of stale have been considered 
by the author[3] based on molecular geometric con- 
sideration for the reference repulsive terms and weakly 
perturbed attractive terms. 

Here we summarized several features of this equa- 
tion and illustrate how the Powell algorithm can be used 
to determine its adjustable parameters to achieve a 
reliable representation of the experimental data. This 
modified equation of state can predict over very wide 
range of fluid phase properties including those in the 
critical region providing the experimental data and the 

critical point constraints are correctly utilized. 
The expression for the compressibility factor is the 

sum of a refenence, hard-core terms and a perturbed at- 
tractive terms: 

Z = Z ~ f  . . . . . .  + Z  ,I ~ Zp~t~,,-b~a, (A ~>0) (2) 

1 G~h G2h G3h 
Z,-ee . . . . . .  = ( l - h )  q ( l - h ) '  t ~ q  ( 1 - h i '  

(3) 
GoOh 

Zperturbed: R ' I '  (B'q-B2h4B3h2) (4) 

h = G o / V = G o P  (5) 

In equatin (3) Go is the effective hard-core volume 
and Gi (i= 1, 2, 3) are the geometric coefficients in 
the reference potential, where the hard-core volume 
Go can be separately related as functions of molecular 
weight, density at melting point and system temperature 
[13]. However, in this illustration we treat as adjustable 
parameters since this crude assumption increase model 
nonlinearity significantly in the optimization. In princi- 
ple, also the coefficients G~ in the reference potential can 
be related before perturbation as shape factor para- 
meters by considering the molecular characteristics 
such as hard-disk, hard-dumbell, or spherocylinder. In 
equation (4) the coefficients Bi(/= 1,2,3) are the first 
order perturbation constants. These coefficients of G, 
and B i are then strongly related to the bulkiness of dif- 
ferent compounds and they may be correlated with fac- 
tors such as molecular bulkiness. Currently this 
theoretical approach is investigating by the author. �9 is 
the attractive energy (.here the Lennard-Jones kinetic 
energy for molecularly simple systems). In the present il- 
lustrative study we treat all coefficients as adjustable 
parameters although any dispute is indispensable, 
x I=G O , x 2=G~, x 3=G2, x4=G3 and x s=B~,X 6=B a, 
x 7 = B 3, respectively. Here the objective function was ex- 
pressed by the sum qf two contributions: the sum of all 
the squared, weighted deviations in the calculated 
pressure (PVT) and in the calculated vapor pressure 
(PV). 

t~ 
, ( ~ t -  P s a , ) ,  F(x)=Wo, , ,Z  ( p c - p ' ) ; + W p v  Z pc , , 

(6) 

In equation (6), W is a weighting factor and N is the 
number of data points. The superscript c indicates a 
calcluated value, given by the equation of state, and the 
superscript e indicates an expermental value. In fitting 
equations of state, we considered equality constraints; 
those given by the critical point conditions. 

C'.,= (pc_  pe)~,  vc= 0 (7) 

(OP,  
c ,  = , ~ - @  . . . . .  = 0 (8) 
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9 ' p ,  
G =  (~ . . , )  r .... = 0 (9) 

In the present study these three critical point zero 
constraints are assumed to be satisfied in the program 
witifin the tolerance of nea>zero values. 

RESULTS AND DISCUSSION 

To provide the proper search direction, good initial 
parameter estimates are required in the algorithm. They 
were obtained by first performing linear regression of all 
the parameters except the hard-core volume parameter, 
Go, which was set as a unique physical constant for dif- 
ferent components. The hard-core volume parameter is 
directly related to the hard-sphere diameters. Only PVT 
data were used in the linear regression by common least 
square subroutine. All the parameters were then ad- 
jusled with the powell algorithm. A typical iteration is 
shown in Figure 1 and 2 for pure argon; the values of 
the objective function and constraints are plotted with 
respect to the number of iteration. In the initial stages, 
there are large changes in ~he magnitude of the objective 
function since the introduction of constraints tend to in- 
crease the deviation of squared sum and the search 
direction vector start adjust simultaneously both func- 
tions to satisfy the optimization scheme. However, once 
the constraints are satisfied, the algorithm converges 
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rapidly and yield a very small value for the overall sum 
of squared residuals. Convergence is achieved when the 
e q u a t i o n J F ( ~ ) - F * ] + I Z a , C , ( x ) I i s  less than the 
convergence tolerance of 1E-06. Here F* is the predicted 
final value of the objective function, and a, is the 
L~range parameter at the solulion of the most recent 
quadratic programming calculation. 

The weighting factors for the systems were set at 
Wp,t= 0.1 and Wp,= 10.0 for PVT data and vapor 
pressure data respectly. The heavier weighting for the 
vapor pressure data increases that good vapor pressures 
are obtained. The illustrative optimum values of 
parameters and constraints are given in Table 1 and 2 
for systems argon, nitrogen and methane. The optimum 

Table  1. Minimized values  of critical point cons- 

traints us ing  the variable metric  me- 

thod for i l lustrat ive  s y s t e m s .  

Critical point constrainls  
System 

(p~_ p.) ( (a'P, 3[-' 
. . . . .  ,'c ~ g  ) *~. v g g w  To, v 

Argon -0.383• ~ 0.4352• -S 0.1662x10 3 

Nitrogen 0. 160x 10 ~ 0.6125x t0-' 0.1324• 

Methane 0.123x10 s 0.345 • -0.101 Xl0 ~ 

Table  2. Calculated pure component parameters  for i l lustrative systems.  

Iteration Constraint optimized value 
system 

Number Go Gl G= Ga B, B= B, 

Argon 36 0. 01173 3. 7283 - 9. 6685 25. 0319 1. 3714 - 3. 6586 7. 7999 

N~trogen 19 0,.0110 5. 1108 -13.8032 46. 1221 2.4108 - 7.9026 20.4825 

Methane 162 O. 006298 11_. 2857 -18. 8608 33. 8615 3. 4044 -17, 7899 58. 5145 

Korean J. Ch, E, ( Voh 3, .No. 1) 
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vapor pressures  for pure methane.  

values of constraints are not exactly zero as we defined 
previously, however, those values are sufficiently near 
zero to satisfy the zero constraint conditions. A very 
good representation of the critical region including 
critical point are achieved. 

The calculated densities for argon, nitrogen, and 
methane are shown in Figure 3-5. Experimental data 
[141 for pressure up to 5,000 atm, and temperature to 
600 K. 
Figure 6 shows calculated and experimental vapor 
pressure for the same systems; the calculated values 
agree almost exactly over the entire range. 

CONCLUSIONS 

We have shown how a constrained nonlinear pro- 
gramming technique of Powell can be applied to the 
problem of estimating constrained parameters in a ten- 
tative multi-property equation of state. 

The technique presented here is especially useful for 
determining parameters in highly complex ther- 
modynamic model as well as other equations which re- 
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quire that several constraints imposed by the thermo- 
dyanmic considerations also must be tatisfied. 
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NOMENCLATURE 

B* : Positive definite materix in Powell algorithm 
Bi : Perturbation constants 
Ci : Constraint functions 
d : Vector that minimize the objective function 
F : Objective function 
G : Geometric expansion coefficients 
g : Gradient of objective function 
h : Density parameter 
K : Metrix of constraints normal 
N : Data points 
p : Pressure, atm 
Q : Quadratic function 
R : Gas constant 
T : Temperature, K 
V : Volume, liter/mole 
W : Weighting factor 
x : Vector of parameters~: 
Z : Compressibility factor 

Greeks Letters 
a : Lagrange parameter 
�9 : Lennard-Jones kinetic energy 
2 : Perturbation constants 
p : Density 
Superscripts  
c : Calculated 
e : Experimental 
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